Mapping vegetation dynamics on embryonic sand dunes: a fine-grained atlas for periodic plant monitoring in a Mediterranean protected area.

SUSSANNA IONI
“Torre Flavia” LTER (Long Term Ecological Research) Station, Città Metropolitana di Roma, Parks Service, via Ribotta, 41, 00144 Rome, Italy - Email: susanna.ioni@studenti.unitus.it

CORRADO BATTISTI
“Torre Flavia” LTER (Long Term Ecological Research) Station, Città Metropolitana di Roma, Parks Service, via Ribotta, 41, 00144 Rome, Italy – Email: c.battisti@cittametropolitanaroma.gov.it

GIULIANO FANELLI
Dipartimento di Biologia, Università degli studi di Roma Tor Vergata, via della Ricerca Scientifica, 00133 Rome, Italy – Email: giuliano.fanelli@gmail.com

Abstract
A field study for monitoring the vegetation dynamics on coastal sand dunes started in 2017 in the Torre Flavia Special Protection Area (Central Italy). The distribution, richness and diversity of plants (mainly halo-psammophile species) were considered. In the study area a set of conservation measures have been carried out to mitigate anthropogenic disturbances (e.g., trampling). Using a fine-grained squared grid (77 units, 10x10 m each), we recorded seven plant species (6 native and one allochtonous: Carpobrotus sp. acinaciformis vel. edulis), with Thinopyrum junceum, Salsola kali and Xanthium orientale subsp. italicum as dominant species. Local species richness is higher in the central part and in the south-west sector of the study area, where the dunes are higher and older. This first survey will allow to verify in the next years the success of the adopted conservation strategy.

Key words: richness, diversity, evenness, monitoring, dunal conservation.

Introduction
Coastal dunes are transitional ecosystems hosting a highly specialized fauna and flora (McLachlan & Brown, 2006; Schlacher et al., 2008). These peculiar ecosystems are particularly vulnerable to anthropogenic disturbances, such, for example, human trampling (Bowles & Maun, 1982; Lemauviel & Rozé, 2003; Schlacher et al., 2007; De Feo et al., 2009; Santoro et al., 2012). In this regard, it is necessary to develop strategies to mitigate these threats (e.g. implementing fences or developing public communication). However, to verify the effectiveness of these interventions it is necessary to carry out specific monitoring so as to compare the occurrence, distribution and diversity of plant species before and after these interventions.

Along the northern coastline of Rome (central Tyrrenian Italy), following the construction of a breakwater pier (in 2011), a series of embryonic dunes gradually developed. These neo-ecosystems are subject to intense trampling due to the high human pressure of citizens who frequent the beach in the late spring-summer period. To mitigate this disturbance, the Public Agency managing the protected area (Città metropoli-
Susanna Ioni, Corrado Battisti, Giuliano Fanelli

tana di Roma Capitale) carried out some operational measures delimiting the embryonic dunes and placing information signs. Following these interventions, we are witnessing a progressive recovery of vegetation, as well as the nesting of two rare species of caradrid birds (Charadrius alexandrinus and C. dubius) that breeding on the site (Battisti et al., 2020a). In order to study the vegetation dynamic on these dune systems over time, in 2017 a field study was started to monitor the occurrence, distribution and diversity of fine-grained dunal plants (mainly halosaprophile species), using a fine-grained squared grid. This work reports the data of this first arrangement survey which will allow to verify the success of the conservation measures in the next years.

**Study area**

The study area (Torre Flavia wetland—Natural Monument) is located on the Tyrrenian coast (Ladispoli; province of Rome; Central Italy; 41.57° N; 12.02° E) and designated as a “Special Protection Area” (code IT6030020; 147/2009/CE ‘Birds’ Directive; European Commission, 1979; Fig. 1). The present wetland (about 43 ha) is a relic of a larger area that was recently drained and transformed (Battisti, 2006). Along the coastline, the area is characterized by a number of typical coastal habitats identified by the European Commission (2007) and by the Italian Ministry for the Environment (Bondi et al., 2009). They were classified in accordance with the “Habitats Directive” (European Commission, 1992, 2007). The dune vegetation of the area can be considered relatively homogeneous: it corresponds mainly to the Habitat 2110 (Embryonic shifting dunes), characterized by the dominance of Thinopyrum junceum and Anthemis maritima (Ceschin & Cancellieri, 2006).

The protected area is managed by a Public Agency (Città Metropolitana di Roma Capitale) which periodically carries out conservation actions on priority targets for mitigating anthropogenic threats (e.g. trampling on dunal plants; Battisti et al., 2008; 2020a; 2020b). In particular, since 2017 some interventions have been started to protect the dunes from people trampling, delimiting these areas with poles and ropes and signalling them with signs designed to increase public awareness of the value of these neo-ecosystems.

**Methods**

We defined a fine-grained grid composed of 77 10x10m cells over-imposed on the dunal system covering a total area of 7700 square meters. An operator (Susanna Ioni) carried out a field sampling in each 10x10 cell recording the occurrence and cover of each plant species. We used cover-abundance as a measure of plant cover, according to Braun-Blanquet phytosociological approach in

---

Figure 1. Map of the study area (black box indicated by a row) in the Torre Flavia Special Protection Area (central Italy).
vegetation science (Braun-Blanquet, 1964). It is based on cover percentages, but uses abundance estimates for species with a low plant cover. Cover was estimated using the original 5-point cover scale (Braun-Blanquet or the Domin scale; Braun-Blanquet, 1932), assigning ‘+’ when species was occasional (cover < 1%), 1: > 1-5%; 2: > 5-25%; 3: > 25-50%; 4: > 50-75%; 5: > 75-100%. We reported data on plant occurrence and cover on species-specific maps (Autodesk version for students), obtained using a professional flying drone (DJI Phantom 4). We developed a map of autochthonous species richness (i.e. excluding the non-native and introduced Carpobrotus sp.) for all the fine-grained grid.

For each species, we obtained both the total number of occurrences (and relative frequency; fr occ) and the total cover in the dunal system (summing the values of cover and assigning 0.5 to ‘+’ values; and the relative frequency, fr cov). We considered as dominant species the species with a frequency > 0.15.

Finally, we obtained: (i) the total number of species (S), (ii) the Shannon-Wiener diversity index as $H' = -\Sigma p_i \ln(p_i)$, (iii) the evenness index (as $e = H'/H_{\text{max}}$ where $H_{\text{max}} = \ln(S)$) (Magurran, 2013 for a review), both for all the species assemblage and for the assemblage of the only native species. The diversity and evenness indices have been calculated both on occurrence and species cover.

To test for differences between frequencies, we performed a paired $\chi^2$ test (with Yates correction). Alpha level was set at 0.05 level.

**RESULTS AND DISCUSSION**

Totally, we obtained 239 occurrences belonging to 7 plant species (6 native and one allochthonous; Table 1). Thinopyrum junceum, Salsola kali and Xanthium orientale subsp. italicum were the dominant species (fr>0.15, both in occurrence and cover).

We observed a significant threshold between the frequencies of occurrence of dominant Xanthium orientale and the first not dominant species (Anthemis maritima: $\chi^2 = 6.189$, $p = 0.012$). Differences between the first three dominant species (Thinopyrum junceum vs. Salsola kali: $\chi^2 = 0.264$, $p = 0.607$; Salsola kali vs. Xanthium orientale subsp. italicum: $\chi^2 = 3.503$, $p = 0.061$) and between other not dominant species (Anthemis maritima vs. Cakile maritima: $\chi^2 = 0.96$, $p = 0.327$; Cakile maritima vs. both Carpobrotus sp. and Euphorbia peplus: $\chi^2 = 0.587$, $p = 0.443$) were not significant.

Carpobrotus sp. (acinetiformis vel. edulis) was the only allochthonous introduced species. Shannon-Wiener diversity index was $H' = 1.73$ for occurrences, and $H' = 1.70$ for cover; evenness index was $e = 0.889$ (occurrence) and $0.874$ (cover). Considering only the native plant community we obtained the following values: $H' = 1.62$ (occurrence) and 1.57 (cover); $e = 0.904$ (occurrence) and 0.876 (cover).

Maps with local species distribution have been reported in Fig. 1. Local species richness shows its higher value in the central part and in the south-west sector, where the dunes are higher.

In the south-east sector number of species is lower (Fig. 2). Our data suggest as the area can be divided into three sectors with different species in each: the NW sector, the E sector and the SW sector. The NW sector is characterized by slightly higher dunes at a bigger distance from the sea; the E sector is characterized by low dunes and by an intermediate distance from the sea and the SW sector is close to the sea with low dunes. The floristic composition, the morphology and the position suggest that the SW and E sectors can be referred to embryonic dunes whereas the NW sector is an initial stage of white dunes.

The mapped species can be easily clustered into the two types of dunes (Géhu et al., 1984). Anthemis maritima L. is a species of Ammophilion, Br.-Bl. 1933. i.e of typical sand dunes: it occurs mainly in the NW sector. Thinopyrum junceum (L.) Å. Löve, is a species of embryonic shifting dunes [Agrropyron junceum (Tüxen 1963); Géhu, Rivas-Martinez & Tüxen ex Géhu et al., 1984]: it is present in all three sectors (more abundant in the NW and E), signalling the process of formation of the dunes. Euphorbia peplus L. and Salsola kali L. are typical species of the foredune, where they colonize, in natural conditions, the drift left by the sea. They occur however also in disturbed dunes, in the E and SW sectors, indicating the pioneer character of these sector. Xanthium orientale subsp. italicum is an invasive species that is nonetheless well established in foredunes all around the Mediterranean: it has a similar ecology to E. peplus and Salsola kali and is also present in the E and SW sectors.

Briefly, SW and E sectors are a pioneer form of embryonic dunes (Habitat 2110) with many characteristic species of foredunes, whereas the NW sectors is an initial stage of typical sand dunes (Ammophilion - Habitat 2120) according to Braun-Blanquet (1932, 1964). The NW sector dunes lacks the typical presence of Ammophila arenaria. Probably, this fact is due to a local slow sand colonization by this species after local extinctions.

We observed a balancing between frequencies both in occurrences and in cover. The only non-native taxa (Carpobrotus sp.), an invasive South-African species, occurs due to the pre-

<table>
<thead>
<tr>
<th>Species</th>
<th>n occ</th>
<th>fr occ</th>
<th>cover</th>
<th>fr cov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thinopyrum junceum</td>
<td>68</td>
<td>0.285</td>
<td>59.5</td>
<td>0.296</td>
</tr>
<tr>
<td>Salsola kali</td>
<td>62</td>
<td>0.259</td>
<td>52</td>
<td>0.259</td>
</tr>
<tr>
<td>Xanthium orientale</td>
<td>44</td>
<td>0.184</td>
<td>39.5</td>
<td>0.197</td>
</tr>
<tr>
<td>Anthemis maritima</td>
<td>24</td>
<td>0.1</td>
<td>20.5</td>
<td>0.102</td>
</tr>
<tr>
<td>Cakile maritima</td>
<td>17</td>
<td>0.071</td>
<td>11.5</td>
<td>0.057</td>
</tr>
<tr>
<td>Carpobrotus sp.</td>
<td>12</td>
<td>0.05</td>
<td>11.5</td>
<td>0.057</td>
</tr>
<tr>
<td>Euphorbia peplus</td>
<td>12</td>
<td>0.05</td>
<td>6.5</td>
<td>0.032</td>
</tr>
</tbody>
</table>

**Total** 239 1 201 1

Tab. 1. Occurrences (n occ) and cover (and relative frequencies; fr occ and fr cov) of plant species on the dunal system studied.
Fig. 2 a, b, c, d, e, f, g. Local distribution maps of the plant species (bar represents 40 m in length, divided into 10 m sub-bars).

Figure 3. Map of local species richness.
rence of a bathhouse (in the North-Western sector of the grid), who voluntarily introduced the species in the last decade (see Battisti et al., 2019): however, this species has already colonize a sector inside the dune (isolated plants in the north-east sector).

The pattern of species richness shows the high number of species (n = 5) where the dune is higher and more structured (central part and sector in the south-west). In the SE sector, physical factors (winter storms, strong winds) stress the system and the dune has not yet been structured: consequently number of species is lower or they are absent. In the fringes of E and SW sectors, where the colonization process is just at its beginning, the number of species is higher inward. But the highest values are reached in an intermediate ecotonal belt where the typical initial stages of sand dunes and embryonic dunes meet: in this ecotone species from different species, pool coexist, thus increasing the species richness.

These first data indicate an ongoing dynamics. Monitoring in next years will allow to describe the species succession and, in such a way, to verify both the effectiveness of the decreasing people trampling and of the decreasing expansion of non-psammophytes, according to the strategy promoted by the public Agency (see Valcheva et al., 2019).

ACKNOWLEDGMENTS

Luca D’Ascanio, Giuseppe Vella (students in Civil Engineering in University Rome III) for the map design and drawing; Fabio Tizzano for the drone fly. Carlo Galimberti Egidio De Angelis, Narciso Trucchia (rangers of Special Protection Area ‘Palude di Torre Flavia’ Natural Monument) for the support in operational actions; the Major of Ladispoli (Alessandro Angelis, Narciso Trucchia (rangers of Special Protection Area) for the support in operational actions; the Major of Ladispoli (Alessandro Angelis, Luca D’Ascanio, Giuseppe Vella (students in Civil Engineering in University Rome III) for the map design and drawing.

Battisti C., De Angelis E., Galimberti C. & Trucchia N., 2020 - Non-psammophytes, according to the strategy promoted by the public Agency (see Valcheva et al., 2019).

REFERENCES


